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Abstract

This paper studies procedures for identifying the true answer to a binary ques-
tion using the opinions of potentially-biased individuals. It’s common and natu-
ral to side with the majority opinion, but the majority may make the wrong choice
when the agents are biased. Taking majority rule as a baseline, I study peer-prediction
decision rules, which ask agents to predict the opinions of others in addition to pro-
viding their own. This extra information enables us to potentially recognize the
correct answer even when the majority is wrong.

I first show that peer-prediction rules cannot be more accurate than the major-
ity when we require them to satisfy the same symmetry conditions as majority rule
and to be incentive-compatible for agents who intend to push the final decision
towards their own opinion. Realistically though, not all agents distort their infor-
mation strategically. I provide a simple decision rule based on the median agent’s
prediction that matches majority rule when all agents are strategic and makes more
accurate decisions than majority rule when some agents are honest.

1 Introduction

In October 2015, a team of inmates from Eastern New York Correctional Facility debated
a three-time national champion team from Harvard. After hearing arguments, the panel
of judges decided by majority vote in favor of the inmates1. Majority rule is a natural
way to make group decisions like this one for multiple reasons. First, it is simple and
transparent. Second, the procedure does not favor one side over the other or make dis-
tinctions between judges. Finally, it is strategically robust, making honest revelation a
dominant strategy if agents want the final decision to match their personal opinion.

1Leslie Brody, “Prison vs. Harvard in an Unlikely Debate,” The Wall Street Journal, Oct. 8, 2015. <http:
//www.wsj.com/articles/an-unlikely-debate-prison-vs-harvard-1442616928>
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Although judges might vote to favor their opinion, the point of the competition is to
decide which team is most skilled, not to aggregate the judges’ preferences. The choice
of winner should accurately reflect which team did better (according to some criteria) for
the debate to be legitimate. However, the only way to identify which team is most skilled
is through the judges’ subjective assessments, and a judge’s opinion could be correct
or mistaken relative to the underlying truth. Since individual judges can be mistaken,
the goal when aggregating opinions is to maximize the probability of choosing the most
deserving team.

Information aggregation through voting is a long-studied question initiated by the
Marquis de Condorcet in 1785 in his essay on majority decisions. The standard model
following Condorcet assumes agents have noisy signals about the true state that are cor-
rect more often than not. An example would be debate judges who are 70% likely to vote
for Harvard when the Harvard team is in fact better and 30% likely to vote for Harvard
when the inmates are actually better. Under Condorcet’s model, majority rule is more
accurate than any given judge, smoothing out noise in opinions to identify the “wis-
dom of crowds.” However, aggregating noisy signals through majority rule can make
matters worse when bias is present. Given the associations that come with Harvard un-
dergraduates versus inmates convicted of violent crimes, a fair assessment is a lot to ask
of a judge. Bias wouldn’t be surprising and could go in either direction—discounting
inmates because of their background or favoring them as underdogs.

Some degree of bias isn’t fatal to the performance of majority rule. For instance, sup-
pose each judge is 60% likely to favor Harvard in the state of the world where they are
best and 90% likely to favor the inmates when they are best. This is a scenario where the
judges are more impressed by a “good” team of inmates than a “good” team from Har-
vard. Nevertheless, when these opinions are aggregated, the group decision still favors
the best team in each state of the world, with the only difference being Harvard wins by
a smaller margin.

In contrast, suppose the bias is stronger and judges are 40% likely to correctly favor
Harvard and 90% likely to correctly favor Eastern Correctional. The opinions are still
correlated with the truth—comparatively more judges favor Harvard when they are best.
Nonetheless, the Harvard supporters will be in the minority on average in each state.
Majority rule will choose the inmates regardless of the truth.

Debate organizers concerned about potential bias could pick a decision procedure
other than majority rule. However, doing so would require insight into the precise nature
of the bias. For instance, a unanimity rule where the Harvard team wins only if all judges
support them would counteract a bias towards Harvard, but would also exacerbate a
bias towards the inmates. Debate organizers might not trust themselves to adjust the
decision rule in the right direction, and the teams would be understandably upset at the
asymmetric standard even if they did. A satifactory alternative to majority rule needs to
be neutral, treating each option symmetrically.

Furthermore, groups like corporations, unions, or homeowners’ associations need
a single rule that can be applied consistently across different contexts. Achieving this
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can be difficult given that the degree of bias may change how we should interpret a par-
ticular level of support for one team over another. For instance, if judges are biased
towards Harvard, Harvard may deserve to lose even with a two-thirds majority. A single
rule responsive to different circumstances has to collect additional information from
agents beyond their opinions. In particular, a decision rule could ask agents to predict
the opinions of other group members. By comparing the actual level of support with
the predicted level of support, a “peer-prediction” decision rule can potentially make
more accurate decisions than majority rule without knowing the likelihoods of opinions
in each state.

Consider the following example: three judges are independently and identically 40%
likely to correctly favor the Harvard team and 90% likely to correctly favor the inmates.
Each judge puts equal prior probability on either team being best and updates their
beliefs after observing their own opinion using Bayes’ rule. Let the opinion of judge i be
xi and the best team be ω. Under majority rule, the Harvard team wins with probability

Pr[Majority for Harvard |ω= Harvard] = Pr[Three Harvard supporters |ω= Harvard]

+Pr[Two Harvard supporters |ω= Harvard]
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when they’re best, and the inmate team wins with probability 0.97 when they are best.
Rather than use majority rule, let’s say Harvard wins if the percentage in support of

Harvard is greater than the average predicted support for the team. For example, if the
average predicted support for Harvard is 70%, then Harvard would win with 80% support
and lose with 60%, despite still being favored by the majority. Framing the rule in terms
of Eastern Correctional would produce identical decisions, so this rule is neutral. Condi-
tional on their opinion, a Harvard supporter expects another judge to support Harvard
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Similarly, an Eastern Correctional supporter expects others to support Harvard with
probability 0.22. Assume all judges reveal their beliefs honestly. Since the average predic-
tions for Harvard are 34% with three supporters, 30% with two, 26% with one, and 22%
with zero, Harvard wins unless the judges unanimously support the inmates. Under this
rule, the probability of Harvard winning conditional on being best is

Pr[Harvard support > predicted |ω= Harvard] = Pr[100% support > 34% predicted |ω= Harvard]

+Pr[66% support > 30% predicted |ω= Harvard]

+Pr[33% support > 26% predicted |ω= Harvard]
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and 0.73 for the inmates. The prior probability of this peer-prediction rule making the
correct decision is then

Pr[ω= Harvard] ·Pr[Harvard support > predicted |ω= Harvard]

+Pr[ω= ENYCF] ·Pr[ENYCF support > predicted |ω= ENYCF]

= 1

2
0.78+ 1

2
0.73 = 0.75

compared to 0.66 for majority rule, producing more accurate decisions on average in
addition to being fairer between states.

While promising, a problem remains with this particular peer-prediction rule: it’s
not incentive compatible if judges want the decision to match their own opinion. In-
centive compatibility guarantees participants will report honestly even if they’re willing
to misreport. A judge would benefit from strategically claiming all others will have the
opposite opinion. If a Harvard supporter predicts no other judges will favor Harvard,
the average prediction will be lower, making it possible to secure a win with fewer sup-
porters. Analogously, an inmate supporter maximizes the chances of an inmate win by
predicting unanimous support of Harvard from the others. Under this strategy, the aver-
aged predictions of how many other judges favor Harvard are:

Harvard supporters Inmate supporters Average predictions Support for Harvard
0 3 100% 0%
1 2 66% 33%
2 1 33% 66%
3 0 0% 100%

The percentage of Harvard supporters is greater than the average “prediction”(i.e. the
condition for a Harvard win under this proposed peer-prediction rule) if and only if a
majority favors Harvard. Because of strategic reporting, the outcome becomes identical
to majority rule, and the potential benefits of using peer-prediction evaporate.

In this paper, I investigate whether incentive-compatible peer-prediction decision
rules exist that are more accurate than majority rule. I require candidate peer-prediction
rules to be neutral—symmetric between the two choices—and anonymous—symmetric
between group members—like majority rule.

Different types of incentive compatibility constraints provide different guarantees
for when a participant will truthfully reveal their information. Bayesian incentive com-
patibility is a standard requirement but is acknowledged to carry strong assumptions.
A more robust alternative is dominant-strategy incentive compatibility. Majority rule,
for instance, is dominant-strategy incentive compatible because voting for one team al-
ways makes it more likely they’ll win. However, requring dominant-strategy incentive
compatibility makes it impossible for the decision to incorporate predictions. Instead,
I rely on an intermediate form of incentive compatibility based on iterated deletion of
weakly interim-dominated strategies. A decision rule is robustly implementable if hon-
est relevation survives this process of iterated deletion.
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The paper proceeds as follows. Section 2 provides related literature. Section 3 de-
scribes the model and design objective. In section 4, I show predictions can play al-
most no role in deterministic, neutral, anonymous, and robustly implementable deci-
sion rules. As long as every agent thinks it’s possible another agent holds the opposite
opinion, the decision matches majority rule. Section 5 provides a characterization of
randomized, neutral, anonymous, and robustly implementable decision rules in terms
of a common functional form that varies only with the choice of two non-decreasing
functions and two real numbers. In section 6, I numerically search for the optimal ran-
domized mechanism using the analytical characterization of the previous section. Al-
though randomized decision rules can non-trivially depend on agents’ predictions, ma-
jority rule outperforms all rules that incorporate predictions. Despite the promise of
peer-prediction rules for identifying the true state more frequently, these results show
majority rule can’t be beaten subject to incentive constraints.

However, since it is plausible some agents are willing to give sincere predictions,
section 7 considers non-incentive-compatible rules that make more accurate decisions
than majority rule when some agents are unconditionally honest and become equiva-
lent to majority rule when all agents are strategic. For instance, one simple rule based on
a weighted combination of the percentage in support and the median prediction makes
25-50% fewer mistakes than majority rule when half of the participants report honestly
and half report strategically. Finally, section 8 concludes.

2 Related Literature

Extensive work has been done to answer when groups can make correct decisions through
voting procedures and when information can be elicited from strategic agents. Research
on the accuracy of collective decisions dates to the Marquis de Condorcet’s essay on ma-
jority rule. Condorcet’s jury theorem now has many different forms (Grofman et al. 1983).
In its standard version, it says majority rule is almost certain to choose the correct state
as the number of agents voting grows large. Furthermore, simple majority rule is the op-
timal decision rule when each state has equal prior probability and agent’s opinions are
distributed identically and independently conditional on the state (Nitzan and Paroush
1982).

Across various extensions, the critical assumptions of the Condorcet jury theorem
are that the average voter is more likely to favor the correct state than not and prefer-
ences do not change conditional on being the pivotal voter. Austen-Smith and Banks
(1996) reconsider the second assumption, showing that sincere voting is typically not
equilibrium behavior when agents have aligned preferences for the decision to match
the true state. Following work on strategic voting has primarily focused on comparing
particular voting rules, often reaching the conclusion that requiring unanimity is worse
than simple majority or any supermajority (Feddersen and Pesendorfer 1998; Gerardi
2000; Duggan and Martinelli 2001). In this paper, I take a mechanism design approach
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to address violations of the first assumption while retaining the second.
A parallel line of research on eliciting information from strategic agents with differ-

ing preferences was initiated by Crawford and Sobel (1982). Many papers have con-
sidered elicitation from groups of experts, including Austen-Smith (1993); Feddersen
and Pesendorfer (1997); Krishna and Morgan (2001); Battaglini (2004). Of particular
relevance, Li et al. (2014); Wolinsky (2002); Glazer and Rubinstein (2004); Gerardi et al.
(2009); Chwe (2010) take a mechanism design approach. Each of these considers im-
plementation in Bayes-Nash equilibrium in contrast to my approach based on interim
dominance-solvability and a lack of common knowledge about preferences or the infor-
mation structure.

Peer-prediction mechanisms have been studied in the context of eliciting correlated
private signals from groups of payment maximizers without preferences over the con-
clusions drawn from the collected information. Prelec (2004)’s Bayesian truth serum
elicits signals in Bayes-Nash equilibrium even when the principal has no knowledge of
the common prior or signal likelihoods, though the result holds only for a sufficiently
large number of participants that depends on the unknown prior. Witkowski and Parkes
(2012a) construct a variant of Prelec’s mechanism that is incentive compatible for finite
participants in the case of binary questions. Zhang and Chen (2014) and Riley (2014)
provide detail-free mechanisms that are Bayesian incentive compatible for finite partic-
ipants and any number of signals with arbitrary correlation structure. To my knowledge,
this is the first paper to consider a peer-prediction mechanism without transfers.

The Bayesian truth serum scores also function as an anonymous and neutral deci-
sion rule that asymptotically chooses the correct state when agents are Bayesians with
conditionally IID signals and a common prior, even in the presence of statistical bias (Pr-
elec et al. 2014). However, this decision rule is not incentive compatible if agents have
preferences over the result. Since the mechanism chooses the answer with the highest
average score and scores can be unboundedly negative, a single agent can unilaterally
force one answer off the table even if all others are honest. Although I consider non-
incentive-compatible decision rules in this paper, my mechanisms dampen the influ-
ence of strategic behavior.

3 Model

A group of n agents face a decision between two choices A and B . The state ω ∈ {A,B}
denotes the “correct” decision according to some standard, such as the most skilled of
two competitors, the action that will maximize profits, or the true answer to a question.
Where convenient, let the states have values A = 1 and B = 0. From the mechanism
designer’s perspective, the two states have equal prior probability.

Each individual i has an opinion xi ∈ {a,b} about the state and a prediction pi ∈ (0,1)
about the proportion of other agents who hold opinion a. In a slight abuse of notation,
let xi also be an indicator variable with values xi = 1 if i holds the a opinion and xi = 0
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if i holds the b opinion. Let na = ∑
i xi be the number of participants stating opinion

a, nb = n −na be the number of participants stating opinion b, and x̄ = na/n be the
proportion of respondents with opinion a. Let x̄−i =∑

j 6=i x j /(n−1) be the proportion of
agents other than i with opinion a.

Opinions are distributed independently conditional on the state with likelihoods
qA = Pr(xi = a |ω = A) and qB = Pr(xi = a |ω = B). The likelihoods satisfy qA > qB , so
opinions are positively correlated with the corresponding state but are otherwise un-
known to the mechanism designer.

The prediction pi = Ei [x̄−i |xi ] summarizes agent i ’s subjective beliefs about the opin-
ions of others, and will be treated as a random variable distributed independently con-
ditional on xi from the perspective of the mechanism designer. Although I view agents
symmetrically, the agents themselves can have arbitrary beliefs consistent with their pre-
dictions, seeing correlations between individuals or thinking particular agents are more
likely to hold a position. For example, pi = 0.5 is consistent with believing all other
agents are equally and independently likely to hold either opinion, with others being
perfectly correlated and equally likely to hold each opinion, or with half of the agents
holding one opinion with certainty and half holding the other with certainty. I make no
assumptions about higher-order beliefs.

Since agents can see correlations or distinctions between others, predictions aren’t
required to be consistent with Bayesian updating based on my specification. However,
for predictions to retain some connection to the underlying state, I assume agents treat
their opinions as IID signals on average, holding a “prior prediction” between the two
likelihoods that is then updated upward upon observing xi = a or downward for xi = b
plus some noise. In particular, I model predictions as normally distributed on a logistic
scale:

ln
(

pi
1−pi

)
∼ Normal

(
µxi ,σ2) s.t. (1)

µa =µ+γ, µb =µ−γ
µ=α ln

(
qA

1−qA

)
+ (1−α) ln

(
qB

1−qB

)
for some parameters α ∈ [0,1] and γ ∈ R++, which can be interpreted as the prior belief
that ω = A and the amount of evidence participants consider their own opinion to be,
respectively. The distribution of agent predictions comes into play when numerically
evaluating the accuracy of mechanisms, so the choice of distribution can change the
level of performance but doesn’t substantively affect results.

3.1 Peer-prediction decision rules

A peer-prediction decision rule T for n agents takes opinions and predictions as inputs
to produce a choice between the two states. Decision rules can be deterministic or ran-
domized. A deterministic decision rule has output T (x, p) ∈ {A,B ,∅}, where ∅ is a “null
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choice” that can be used in situations with exact ties. A randomized decision rule has
output T (x, p) ∈ [0,1] denoting the probability A is chosen.

I focus on neutral and anonymous decision rules, retaining the properties of majority
rule that no bias is built in towards either state or the opinion of any individual:

Definition 1 (Neutrality). A mechanism T (x, p) is neutral if relabeling states A and B
results in the complement of T , i.e. T (x, p) = 1−T (1−x,1−p) for all x and p.

Definition 2 (Anonymity). A mechanism T (x, p) is anonymous if relabeling agents does
not change T , i.e. T (x, p) = T (σ(x),σ(p)) for all permutations σ.

The mechanism designer’s objective is to maximize the probability the decision matches
the true state:

max
T

Pr[T (x, p) =ω] (2)

or equivalently

min
T

E[ |ω−T (x, p)| ]. (3)

Each agent prefers the decision to match their own opinion. In particular, an agent
with xi = a chooses a report (x ′

i , p ′
i ) to solve

max
(x ′

i ,p ′
i )

Pr[T ((x ′
i , x ′

−i ), (p ′
i , p ′

−i )) = A] (4)

based on their conjecture about the reports (x ′
−i , p ′

−i ) of others. Agents with xi = b then
minimize the above objective.

3.2 Robustly implementable mechanisms

Mechanism design involves finding a procedure for collecting messages from agents and
aggregating the reports into the desired outcome for each type profile while respecting
the incentives of each participant. In general, a mechanism M = (M , g ) consists of a
space of message profiles M and an outcome function g : M → A, where A is the set
of possible outcomes. A mechanism implements T when the outcome of the induced
game under some solution concept matches T .

Peer-prediction mechanisms have a message space where agents report an opinion
and a probability distribution over the opinions of others. A peer-prediction mechanism
can be seen as a “semi-direct” mechanism, asking agents to report a portion of their type
rather than their full type, including a hierarchy of higher-order beliefs. The Bayesian
truth serum (Prelec 2004) is a leading example of a peer-prediction mechanism. This
mechanism has truth-telling as a Bayes-Nash equilibrium for sufficiently large groups of
payment maximizers with an unknown common prior. The average difference in group
scores can distinguish the true answer asymptotically, even with in the presence of false
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consensus (Prelec and Seung 2007). However, existing peer-prediction mechanisms as-
sume agents care only about payments, not about influence. If agents have preferences
over the aggregate score used to estimate the state, the Bayesian truth serum becomes
highly manipulable.

Additionally, existing peer-prediction mechanisms depend on agents sharing a com-
mon prior 2. While common priors are often singled-out as unrealistic, a possibly more
concerning feature is that agents receive a single signal with agreed-upon conditional
likelihoods. Realistically, each expert has seen evidence of various levels of strength that
he may or may not have updated on properly, which points toward some form of robust
implementation beyond Bayes-Nash equilibrium.

Standard notions of robust implementation include implementation in dominant-
strategy or ex-post Nash equilibrium. However, any mechanism that makes one strategy
a best response regardless of the types of others can’t be sensitive to predictions in equi-
librium. Two agents with the same opinion and different predictions have the same
preferences ex-post, so the same outcome will be assigned when the two behave iden-
tically. Independence from higher-order beliefs is usually seen as a benefit, but comes
at the cost of ruling out peer-prediction mechanisms before we even begin. Instead, I’ll
consider a peer-prediction mechanism to be robustly implementable if honest report-
ing is the dominance solvable outcome of the mechanism, surviving iterated deletion
of weakly interim dominated strategies. Throughout the paper, I will rely on only two
stages of strategy deletion.

Definition 3 (Weak interim dominance). A strategy mi weakly interim dominates m′
i for

an agent of type (xi , pi ) if∫ ∫
ui (xi , g (mi ,m−i ))dφ(m−i |x−i , p−i )dπ(x−i , p−i ) ≥ (5)∫ ∫

ui (xi , g (m′
i ,m−i ))dφ(m−i |x−i , p−i )dπ(x−i , p−i ) (6)

for all beliefs π (a distribution over type profiles of others) and φ (a distribution over strat-
egy profiles conditional on type profiles) such that Eπ[x̄−i ] = pi to be consistent with i ’s
type, with strict inequality for some beliefs.

Definition 4 (Dominance solvability). Given a mechanism M = (M , g ), let DM
i (xi , pi )

be the set of strategies mi that survive iterated deletion of all weakly interim dominated
strategies at each stage for agent i of type (xi , pi ). A mechanism is interim dominance
solvable if g (m) = g (m′) for all profiles with mi ,m′

i ∈ DM
i (xi , pi ).

Definition 5 (Robust implementation). A mechanism M = (M , g ) robustly implements
a peer-prediction mechanism T if the unique dominance solvable outcome when agents
have types (x, p) is T (x, p).

2Unless priors and posteriors can be elicited separately, as in Witkowski and Parkes (2012b).
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Definition 6 (Robust incentive compatibility). A peer-prediction mechanism T (x, p) is
robustly incentive compatible if honesty is an interim best response for all conjectures
about others’ types consistent with the agent’s prediction:∫

T ((a, x−i ), (pi , p−i ))dπ(x−i , p−i ) ≥
∫

T ((x ′
i , x−i ), (p ′

i , p−i ))dπ(x−i , p−i )

≥
∫

T ((b, x−i ), (pi , p−i ))dπ(x−i , p−i )
(7)

for all x ′
i , pi , p ′

i , and beliefs π such that

Eπ[x̄−i ] =
∫ #{x j = a | j 6= i }

n −1
dπ(x−i , p−i ) = pi .

The following proposition provides a version of the revelation principle for this set-
ting:

Proposition 1. A mechanism M = (M , g ) can robustly implement T only if T is robustly
incentive compatible.

Proof of Proposition 1 (Robust incentive compatibility). Suppose mechanism M = (M , g ) robustly
implements T , assigning outcome g (m) = T (x, p) for each strategy profile m ∈ ∏

i DM
i (xi , pi ).

Hence, given any mi ∈ DM
i (a, pi ) and m′

i ∈ DM
j (x ′

j , p ′
j ), we must have∫

T ((a, x−i ), (pi , p−i ))dπ(x−i , p−i ) =
∫ ∫

g (mi ,m−i )dφ(m−i |x−i , p−i )dπ(x−i , p−i )

≥
∫ ∫

g (m′
i ,m−i )dφ(m−i |x−i , p−i )dπ(x−i , p−i )

=
∫

T ((x ′
i , x−i ), (p ′

i , p−i ))dπ(x−i , p−i )

for all beliefs π (a distribution over type profiles of others) and φ (a distribution over strategy
profiles conditional on type profiles) such that

Eπ[x̄−i ] = pi and

Prφ[m−i |x−i , p−i ] > 0 =⇒ m−i ∈
∏

j 6=−i
DM (x j , p j )

since mi either weakly dominates m′
i or is equivalent to it when agent i is type (a, pi ) and other

agents play their dominance solvable strategies. This follows similarly for types (x ′
i , p ′

i ) and
(b, pi ), yielding the condition of robust incentive compatibility in line 7.

Although the revelation principle provides some justification for restricting attention
to incentive-compatible mechanisms, I will explore non-incentive-compatible decision
rules that implement majority rule when all agents are strategic and outperform major-
ity rule when some agents are honest later in the paper.
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4 Deterministic decision rules

Consider decision rules which deterministically output a single state for any given pro-
file. Even if first-order beliefs are included in reports, these turn out to play no functional
role in the mechanism since the output is too coarse to respond to predictions. A ro-
bustly implementable, neutral, and anonymous decision rule can deviate from majority
rule only when some agent mistakenly claims the realized profile was impossible:

Proposition 2. If T : {a,b}n × [0,1]n → {A,B ,∅} is a neutral, anonymous, and robustly
implementable decision rule with T (x) =∅ only if x̄ = 1

2 , then it agrees with majority rule
on all profiles with interior predictions p ∈ (0,1)n .

The proof proceeds by showing profiles where agents correctly predict a bare major-
ity must agree with majority rule and then expanding the set of profiles in agreement via
incentive compatibility.

For an example of a deterministic decision rule where predictions do matter, con-
sider a rule for three agents that maps all type profiles to the majority opinion except
for

T ((a,0), (a,0), (a,0)) = B ,

T ((a,0), (a,0), (b, p3)) = B ∀p3 ∈ (0,1],

T ((b,1), (b,1), (b,1)) = A, and

T ((b,1), (b,1), (a, p3)) = A ∀p3 ∈ [0,1),

as well as similar profiles for anonymity. This rule is neutral, anonymous, and robustly
incentive compatible, so agreement with majority rule isn’t required to extend to all pro-
files with extreme beliefs.

If decisions between the two states are randomized, the probability of choosing the A
state in a neutral, anonymous, and robustly implementable mechanism is characterized
in the next section.

5 Randomized decision rules

Randomized decision rules map report profiles into probabilities. Unlike deterministic
rules, this set of decision rules can non-trivially incorporate predictions since there is
more fine-grained control over the output.

As shown in the following theorem, all neutral, anonymous, and robustly imple-
mentable randomized rules for given n have a specific functional form that differ only
by reference types φ1,φ2 ∈ [ 1

2 ,1] and nondecreasing functions τ and ξ. In this charac-
terization, T can be decomposed into a base score (line 8) that depends solely on the
proportion of agents endorsing a. The base score is adjusted by the mean prediction
scores (line 9) of each agent, signed according to their opinion. The base score provides
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sufficient incentive for reports with a false opinion to be interim dominated. Condi-
tioning on each player always wanting to honestly reveal their true opinions, agents will
want to give their true prediction as long as their marginal influence is a proper scoring
rule for the proportion of a endorsements. The parameters φ1 and φ2 describe predic-
tion types where incentive constraints bind exactly. The function ξ weights prediction
scores, controlling the magnitudes of rewards and punishments for prediction accuracy
in each region of the unit interval.

This representation embeds the design constraints into the functional form, reduc-
ing the optimal mechanism design problem to a mildly-constrained search across φ1,
φ2, τ, and ξ.

Proposition 3. A neutral and anonymous peer-prediction randomized decision rule T is
robustly implementable for n participants only if T can be represented as

T (x, p) = 1

2
+ sign

(na
n − 1

2

)(
τ
(∣∣na

n − 1
2

∣∣)+ 1(n odd)
δ

(n−1
2

)
2n

+ 1

n

max{na ,nb }−1∑
m=dn/2e

δ(m)

)
(8)

+ 1

n

∑
i : xi=a

Rξ

(
pi , na−1

n−1

)− 1

n

∑
i xi=b

Rξ

(
1−pi ,1− na

n−1

)
(9)

s.t. δ(m) = max
{−Rξ

(
φ1, m

n−1

)−Rξ

(
1,1− m

n−1

)
, −Rξ

(
1−φ2,1− m

n−1

)}
Rξ(pi , x̄) =

∫ pi

0
(x̄ − t )dξ(t )

for φ1,φ2 ∈ [ 1
2 ,1] and non-decreasing functions ξ : [0,1] → R+ and τ : [0, 1

2 ] → R+. This
representation is sufficient for robust implementation if τ is strictly increasing and the
maximal output satisfies T ((a,1), . . . , (a,1)) ≤ 1.

The requirement for sufficiency that τ be strictly increasing ensures incentives are
strict, while the requirement that T ((a,1), . . . , (a,1)) ≤ 1 ensures the output of T is always
a proper probability contained in the unit interval.

6 Determining the optimal randomized mechanism

Using the representation stated in the previous section, I now investigate the optimal
randomized decision rule. The mechanism design problem is to solve

min
T

E[ |ω−T (x, p)| ]
s.t. T is neutral, anonymous, and robustly incentive compatible,

which is equivalent to

min
φ1,φ2,τ,ξ

E[ |ω−T (x, p)| ] =

Pr(ω= A)E[1−T (x, p) |ω= A]+Pr(ω= B)E[T (x, p) |ω= B ]

s.t. φ1,φ2 ∈ [ 1
2 ,1] and ξ : [0,1] →R+,τ : [0, 1

2 ] →R+ are non-decreasing.
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Unfortunately, this problem isn’t amenable to typical first-order solution methods. Cor-
ner solutions are likely since the objective function is linear in T and T is affine in τ and
possibly ξ. When the objective is locally affine, first-order conditions at the boundary
become trivial.

Since the conditional opinion likelihoods aren’t known to the mechanism operator,
a prior distribution over likelihoods must be specified. Some natural distributions of
likelihoods include:

1. Uniform over all likelihood pairs (qA, qB ) with positive correlation, satisfying qA >
qB

2. Those concentrated around the diagonal or in a band offset from the diagonal

3. Uniform over all unbiased likelihood pairs, satisfying qB ≤ 0.5 ≤ qA

4. Uniform over all biased likelihood pairs, satisfying qB < qA ≤ 0.5 or 0.5 ≤ qB < qA

The first and second possibility can be interpreted as each agent independently knowing
the true state with probabilityλ and otherwise having opinion a with probability (1−λ)γ
and opinion b with probability (1−λ)(1−γ), with both probabilities unknown. The first
corresponds to a uniform prior over both λ and γ. The second corresponds to a normal
distribution (restricted to the unit interval) over λ and a uniform distribution over γ,
allowing for more precise information about the expertise of participants.

As noted earlier, I model predictions as normally distributed on a logistic scale for
parameters α ∈ [0,1] and γ ∈ R++ corresponding to a prior prediction and an degree of
adjustment, respectively. In particular, I assume α,γ ∼ Unif[0,1]. Then, taking expecta-
tions across parameters θ = (qA, qB ,α,γ) ∈ [0,1]4, the likelihood of types in a given state
is

Eθ[Pr(x, p |ω,θ)] =
∫
θ

qna
ω (1−qω)n−na

( n∏
i=1

fxi (pi |θ)

)
g (qA, qB )dθ (10)

s.t. fxi (pi |θ) = 1
pi (1−pi )

p
2πσ2

exp

(
− 1
σ2

(
µxi(θ)− ln

(
pi

1−pi

))2
)

µxi(θ) =α ln
(

qA
1−qA

)
+ (1−α) ln

(
qB

1−qB

)
+ (21(xi = a)−1)γ.

I set σ2 = 1 to produce a realistic amount of dispersion without the distribution bunch-
ing around 0 and 1, which tends to occur when the variance grows larger. Figure 1 shows
typical prediction distributions.

6.1 Representing decision rules numerically

As shown in Proposition 3, optimization over the class of robustly implementable mech-
anisms involves a search over three components: the scoring rule weighting function
ξ(t ), the reference types φ1,φ2, and the extra base score τ(t ). For a numerical solution,

13
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Figure 1: Prediction densities for agents with opinions a and b when
qA = 0.8, qB = 0.4, σ2 = 1, α= 0.5, and γ= 0.5.

I approximate this infinite-dimensional problem with a finite-dimensional representa-
tion.

In full generality, the weighting function ξ used to parameterize the scoring rule
Rξ(pi , x̄−i ) can be any non-decreasing function with a domain of [0,1]. I approximate
a general ξ by decomposing it into a continuously differentiable function and a step
function, producing a scoring rule

Rξ(pi , x̄i ) =
∫ pi

0
(x̄−i − t )ξ′(t )dt +

Kξ∑
k=1

λk1(pi ≥ tk )(x̄−i − tk ). (11)

On the discrete portion, ξ has Kξ atoms at points tk ∈ [0,1] with weights λk ∈R+. On the
continuously differentiable portion, I assume ξ′ is piecewise linear with Hξ−1 segments
at regular intervals, giving the integral a manageable closed form. The contribution to
the total score on an interval [t1, t2] where ξ′(t ) is linear is∫ t2

t1

(x̄−i − t )
(
ξ′(t2)−ξ′(t1)

t2−t1
(t − t1)+ξ′(t1)

)
dt =

t2 − t1

6

(
3(x̄−i − t1 − t2)(ξ′(t1)+ξ′(t2))− t1ξ

′(t1)− t2ξ
′(t2)

)
.

(12)

The score Rξ(pi , x̄−i ) is the sum of this amount on each linear segment inside [0, pi ], so
ξ′ can be parameterized by Hξ values ξ′h ∈R+ at 0,1/(Hξ−1),2/(Hξ−1), . . . , (Hξ−2)/(Hξ−
1),1.

I also represent τ
(∣∣na

n − 1
2

∣∣) using a continuous τ′ with Hτ−1 linear segments and Kτ

weighted atoms. Between densities parameters, atom locations, and atom weights for ξ
and τ and the two reference types φ1,φ2 ∈ [ 1

2 ,1], the total parameter space is Hξ+2Kξ+
Hτ+2Kτ+2 dimensional.
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6.2 Optimization methods

Using this finite-dimensional approximation, the scoring rule Rξ is linear in the vectors
of density values and atoms weights. The estimator T (x, p) is then convex in these pa-
rameters when x̄ > 1

2 and concave when x̄ < 1
2 due to the changing sign on the maximum

taken in δ(m). Since the estimator is neutral, we are always free to reassign labels to
make a the majority opinion and x̄ ≥ 1/2 so that the overall objective is convex in these
parameters. The domain for each of these parameters is the entire positive real line, but
since the objective diverges as any parameter diverges, the minimizer will be in some
bounded interval.

The estimator is less well-behaved in terms of the reference types and atom posi-
tion. A scoring rule is quasiconcave with φ as the prediction, and an atomic scoring
rule R(pi , x̄−i ) = λk1(pi ≥ tk )(x̄−i − tk ) is quasiconvex in tk , but this won’t necessarily
aggregate up into quasiconvexity of the estimator or objective. The estimator is also
discontinuous in these parameters, though the discontinuities will be smoothed out in
expectation in the objective. Consequently, a global optimization procedure may be
necessary to thoroughly search the parameter space.

The optimization problem is unconstrained aside from bounds on each parameter
and possibly a constraint that the output is contained in the unit interval. For the out-
put to be inside the unit interval, it is sufficient that the outcome when agents are unan-
imous and know they are unanimous satisfies T ((a, . . . , a), (1, . . . ,1)) ≤ 1. Values outside
the unit interval are nonsensical for randomized decision rules. Values outside the unit
interval are still undesirable for an estimator but might be acceptable if they occur only
for nearly unanimous inputs, which we expect to be rare. After all, there is little reason
to conduct a survey if an answer is obvious and everyone thinks it’s obvious.

Optimization is done through the Multi-level Single-linkage global optimization al-
gorithm, a multistart method that uses a clustering heuristic to avoid repeatedly return-
ing to the same local minima on each local optimization. For local optimizations, I used
Rowan (1990)’s Subplex algorithm, a variant of the Nelder-Mead simplex method done
through a sequence of subspaces.

6.3 Optimal randomized decision rules don’t use predictions

Unlike deterministic decision rules, randomized decision rules are able to incorporate
predictions while remaining robustly implementable. However, randomized output typ-
ically hurts when maximizing the probability of a correct decision or minimizing the
absolute deviation, so it’s unclear whether the potential benefit is worth the cost.

Optimization over the class of robustly implementable peer-prediction decision rules
returns a mechanism that depends only on opinions, using a τwith a single step and ze-
roing out ξ. This finding holds varying n and the prior on opinion likelihoods. Note
the optimal randomized mechanism isn’t necessarily majority rule. For some priors on
opinion likelihoods (such as a uniform prior over all biased likelihood pairs), the opti-
mal mechanism chooses A when x̄ is sufficiently high, B when x̄ is sufficiently low, and

15



randomizes between them with equal probability when x̄ is in an interval around 1
2 . If

majority rule is the optimal randomized mechanism that uses only opinions, then it is
also optimal in the class of peer-prediction mechanisms.

7 Simple peer-prediction rules with some sincere agents

The preceding results show majority rule is either the only robustly implementable deci-
sion rule or the only one worth considering, modified at most by randomizing in some
interval around x̄ = 1

2 . Nevertheless, like most incentive-compatible direct mechanisms,
the direct mechanism for majority rule takes strategic behavior for granted. Unlike an
allocation setting, it is plausible that some agents are willing to unconditionally tell the
truth and don’t have preferences over the outcome. A non-incentive-compatible deci-
sion rule could implement majority rule when all agents are strategic and outperform it
whenever some agents are sincere.

If all agents are Bayesians who think opinions are IID based on underlying likeli-
hoods, all predictions will be inside the interval [qB , qA]. Without knowing the likeli-
hoods themselves, a third party could easily conclude the state is likely to be A if the
proportion of a opinions is higher than most predictions.

Although I allowed agent predictions as more dispersed, a similar identification of
the state is possible in this setting. I model predictions as satisfying

ln
( qB

1−qB

)< E
[

ln
( pi

1−pi

) ∣∣ xi = a
]

and E
[

ln
( pi

1−pi

) ∣∣ xi = a
]< ln

( qA
1−qA

)
which implies

qB < median(pi |xi = a) and median(pi |xi = b) < qA.

All else equal, we expect the state is more likely to be A when x̄ is higher and when the
proportion of a opinions is higher than the median group predictions, so one simple
decision rule takes a linear combination of these magnitudes 3:

T (x, p) = 1(λ1(x̄ − 1
2 )+λ2(x̄ −median(pi |xi = a))+λ3(x̄ −median(pi |xi = b)) > 0

)
.

For neutrality, we must have λ2 = λ3. For some partial incentive compatibility, the ex-
pression should have λ1 +λ2 +λ3 > 0 to be increasing in x̄. Under these constraints, the
decision rule above is equivalent to

T (x, p) = 1
(
x̄ + λ

2 (1−median(pi |xi = a)−median(pi |xi = b)) > 1
2

)
.

This decision rule has majority rule as the unique dominance solvable outcome. As-
suming λ> 0, all reports for an agent with xi = a are weakly dominated by either (a,0) or

3To avoid taking the median of an empty group, assume the output matches the unanimous opinion if
all agents agree.
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(b,0), depending on which group median the agent has the most influence over. Once all
reports with interior predictions are eliminated, reporting one’s true opinion becomes
the unique weakly dominant strategy for each agent. The group medians cancel out,
leaving only a comparison of x̄ to 1

2 .
When all agents are sincere, this decision rule does quite well. For instance, when n =

50 and there is a uniform prior over opinion likelihoods, this rule forλ= 0.9 misclassifies
the state approximately 13.5% of the time compared to 25% of time for majority rule.

The median is well-known as a robust location estimator, able to withstand up to 50%
of the inputs being adversarially altered before becoming invalid. Suppose each agent is
strategic with identical probability ρ and sincere otherwise. Since there are two weakly
dominant strategies, it’s not obvious what an agent will do when it expects only some
agent to be strategic. If all strategic agents report their true opinion and a prediction
pi ∈ {0,1}, then the group medians quickly degrade to the extremes when ρ > 1

2 , reducing
the decision to majority rule.

In contrast, consider the following even simpler decision rule:

T (x, p) = 1(x̄ +λ(1
2 −median(p)

)> 1
2

)
Call this the median prediction rule. Notice the decision is simply majority rule when
λ= 0. When λ> 0, the unique weakly dominant strategy for the median prediction rule
is for an agent with xi = a to report (a,0) and an agent with xi = b to report (b,1). Again
assuming that agents have an IID chance of being strategic, the median of all predictions
isn’t influenced by strategic behavior until ρ > 1− x̄

2 since the inputs are being manipu-
lated by two opposing groups of agents rather than a single-minded adversary.

Figure 2 depicts how the percentage of misclassified states for n = 15 and n = 100
varies for different weights λ in the decision rule. This is shown for varying percentages
of strategic agents. The optimal weight λ depends on the number of strategic agents,
starting around λ = 0.7–0.8 for completely honest agents and increasing as agents be-
come more strategic. The plots show the median prediction rule being more accurate
on average for every choice of λ (except λ < 1/n, which is too small to change the deci-
sion from majority rule).

Figure 3 depicts the percentage of misclassified states as the percentage of strategic
agents varies, with λ ' 0.8 optimized for ρ = 0 and λ ' 0.95 optimized for ρ = 0.5. As
agents become more strategic and ρ increases to one, the median prediction rule agrees
with majority rule more and more frequently.

While there is little reason to think the median prediction rule is optimal, it is simple
and robust. Adding predictions to the group decision reduces the errors of majority rule
due to bias and, at worst, becomes equivalent to majority rule when agents act strategi-
cally. Majority rule is still a useful means of aggregating preferences, but whenever the
underlying goal is to aggregate information and it’s conceivable that the majority can
make the wrong choice, the median prediction rule is a strong alternative.
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Figure 2: Effect of varying weight λ in the median prediction rule for

percentage of strategic agents ρ in {0.0,0.25,0.5,0.9} in solid to dotted
lines, respectively.
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Figure 3: Percentage of incorrect decisions by the median prediction rule
for n = 50 as the percentage of strategic agents ρ varies with λ = 0.8
solid and λ= 0.95 dashed.
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8 Conclusion

My model takes a broad view of potential sources of bias, capturing two sources usu-
ally considered in isolation: preference-based bias and statistical bias. Agents with a
preference-based bias have some stake in the conclusions drawn from their informa-
tion. Agents are willing to distort or garble information themselves in order to influence
the final results. This form of bias has been thoroughly investigated in the literature un-
der the assumption of commonly known information and structure in order to facilitate
analysis under Bayes-Nash equilibrium.

Alternatively, statistical bias is a systematic tendency for participants to hold a par-
ticular opinion besides the true state of the world, even if agents are sincere or have a
common interest. Under this notion, opinions are biased in the sense that their likeli-
hoods aren’t symmetric across states of the world. In a mild form, 80% of the population
might hold one opinion when it’s correct, while only 60% of the population hold the op-
posite opinion when it’s correct. In an extreme form, an opinion might be held by 90% of
the population when it’s correct and 75% of the population when it’s incorrect, putting
it in the majority regardless of the true state.

These two categories of bias are logically separate but are not easily separated in
practice. Psychological notions of cognitive bias—defined as systematic deviations from
some standard of judgment—can often be interpreted as a preference, and common
usage conflates the two. The success of peer-prediction mechanisms can be seen as
exploiting the false consensus effect identified in social and cognitive psychology (Marks
and Miller 1987). Debate exists whether the false consensus effect is a cognitive bias
or the rational consequence of updating beliefs about others conditional on one’s own
attributes (Dawes 1989), but either is compatible with my model.

I assume agents’ preferences over conclusions do not change conditional on the
reports of others, in contrast to the strategic voting literature where preferences can
change dramatically after updating on others’ information. Reality is somewhere in be-
tween, with people updating on the information of others at a discount relative to their
own information (Yaniv and Kleinberger 2000). In the canonical example of a jury voting
whether to convict a defendant, it’s very plausible an agent would revise their opinion
upon learning others are unanimous since a juror (ideally) doesn’t have a personal con-
nection to the question of guilt. Experimental work by Guarnaschelli et al. (2000) roughly
supports the strategic voting model of Feddersen and Pesendorfer (1998), though the ex-
periment sensibly asked participants to make the bland decision of which jar they drew
colored balls from. In a more emotionally-charged situation like a committee decision
wrapped up in office politics, I expect agents to stick to their opinions regardless of how
others might report.

Possible future directions include experimental work testing the accuracy of these
mechanisms, expanding the scope of the model beyond binary questions, and charac-
terizing the equivalence class of peer-prediction decision rules that implement majority
rule in a way amenable to optimizing accuracy in partially-strategic “equilibrium.”
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9 Computational Details

The numerical results were computed in Julia, v0.4.0 using the MLSL and SBPLX opti-
mization algorithms of NLopt.jl and the h-adaptive integration algorithm of Cubature.jl,
both implemented by Steven G. Johnson.

Appendix

Proof of Proposition 2. Let T by any deterministic, neutral, anonymous, and robustly implementable
decision rule. At least one such decision rule exists since majority rule satisfies these properties.

Suppose n is odd. I will establish the following facts about T in turn:

1. T
(

(a, 1
2 ), . . . , (a, 1

2 )︸ ︷︷ ︸
n+1

2

, (b, p n+3
2

), . . . , (b, pn)
)= A, ∀p n+3

2
, . . . , pn ∈ [0,1]

2. T
(
(a,1), . . . , (a,1)

)= A

3. T
(
(a, p1), (b, 1

n−1 ), . . . , (b, 1
n−1 )

)= B , ∀p1 ∈ [0,1]

4. T
(
(a, p1), (a,1), . . . , (a,1)

)= A, ∀p1 ∈ (0,1]

5. T
(

(a, p1), . . . , (a, p n+1
2

)︸ ︷︷ ︸
n+1

2

, (b, p n+3
2

), . . . , (b, pn)
)= A, ∀p1, . . . , pn ∈ (0,1)

6. T
(
(a, p1), . . . , (a, pm), (b, pm+1), . . . , (b, pn)

)= A, ∀p1, . . . , pn ∈ (0,1),∀m ≥ n+1
2

The first three facts say that majorities of various sizes map to the majority opinion when those
supporters have correct beliefs. The fourth says that one member of a full majority can have an
arbitrary prediction without disturbing the outcome. The fifth says that all members of a bare
majority can have arbitrary interior beliefs without changing the outcome. Finally, the sixth is
the conclusion of the theorem.

I prove the first fact by contradiction. Suppose there are some predictions p ′
n+3

2

, . . . , p ′
n such

that

T
(

(a, 1
2 ), . . . , (a, 1

2 )︸ ︷︷ ︸
n+1

2

, (b, p ′
n+3

2
), . . . , (b, p ′

n)
)= B.

We must then also have

T
(
(a, p1), (a, 1

2 ), . . . , (a, 1
2 )︸ ︷︷ ︸

n−1
2

, (b, p ′
n+3

2
), . . . , (b, p ′

n)
)= B , ∀p1 ∈ [0,1]

for agent one with type (a, 1
2 ) to report truthfully, since the agent could be certain this profile will

occur (consistent with the prediction of p1 = 1
2 that half of the other agents have opinion a) and

thus can’t expect to switch the outcome to A by reporting some other prediction. In particular,

T
(
(a, n−3

2(n−1) ), (a, 1
2 ), . . . , (a, 1

2 )︸ ︷︷ ︸
n−1

2

, (b, p ′
n+3

2
), . . . , (b, p ′

n)
)= B.
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Successively applying the same reasoning to all agents with opinion a yields

T
(

(a, n−3
2(n−1) ), . . . , (a, n−3

2(n−1)) )︸ ︷︷ ︸
n+1

2

, (b, p ′
n+3

2
), . . . , (b, p ′

n)
)= B.

For an agent with type (b, 1
2 ) to report truthfully, we must have

T
(

(a, n−3
2(n−1) ), . . . , (a, n−3

2(n−1)) )︸ ︷︷ ︸
n−1

2

, (b, 1
2 ), (b, p ′

n+3
2

), . . . , (b, p ′
n)

)= B

and then

T
(

(a, n−3
2(n−1) ), . . . , (a, n−3

2(n−1) )︸ ︷︷ ︸
n−1

2

, (b, 1
2 ), . . . , (b, 1

2 )︸ ︷︷ ︸
n+1

2

)= B

by successively applying incentive compatibility for the remaining agents with opinion b. Apply-
ing neutrality and anonymity yields

T
(

(a, 1
2 ), . . . , (a, 1

2 )︸ ︷︷ ︸
n+1

2

, (b, n+1
2(n−1) ), . . . , (b, n+1

2n−2 )︸ ︷︷ ︸
n−1

2

)= A.

For the agents with type (b, n+1
2(n−1) ) who think the previous profile is certain (consistent with their

prediction) to report truthfully, the outcome cannot switch to B for any other prediction report.
Changing the predictions of agents with opinion b in turn yields

T
(

(a, 1
2 ), . . . , (a, 1

2 )︸ ︷︷ ︸
n+1

2

, (b, p ′
n+3

2
), . . . , (b, p ′

n)
)= A,

which is the original profile assumed to map to B , resulting in a contradiction.
The second fact follows from the first. Changing an agent from opinion b and an arbitrary

prediction to opinion a and an accurate prediction for that profile must leave the outcome un-
changed at A for incentive compatibility. This can be repeated until all agents have opinion a.
Notice that as the types of other agents change, what was once an accurate prediction might
become inaccurate. Updating the prediction of an agent with opinion a to be accurate for the
profile must also leave the outcome unchanged, so the prediction for each can be changed to
pi = 1, resulting in T

(
(a,1), . . . , (a,1)

)= A.
The third fact follows from the first similarly to the second. All but one agent with opin-

ion b can be replaced by an agent with opinion a and an accurate opinion for that profile. By
anonymity, this yields

T
(
(b, p1), (a, n−2

n−1 ), . . . , (a, n−2
n−1 )

)= A, ∀p1 ∈ [0,1]

and finally by neutrality,

T
(
(a, p1), (b, 1

n−1 ), . . . , (b, 1
n−1 )

)= B , ∀p1 ∈ [0,1].
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To establish the fourth fact, suppose agent one has type (a, p1) with p1 ∈ (0,1] based on a
belief that all other agents share type (a,1) with probability p1 and type (b, 1

n−1 ) with probability
1−p1. If T ((a, p1), (a,1), . . . , (a,1)) = B , then agent one expects the outcome from reporting truth-
fully to always be B by fact 3. If the agent misreported as type (a,1), then the outcome would
occasionally be A, producing a strictly better deviation. Therefore, we must have

T
(
(a, p1), (a,1), . . . , (a,1)

)= A, ∀p1 ∈ (0,1]

The fifth fact follows similarly to the fourth. Suppose agent one has type (a, p1). If p1 ∈ (0, 1
2 ),

consider an agent who is sure either fact 1 or 3 would apply if he reported (a, 1
2 ). Since the choice

of prediction won’t change the outcome when fact 3 applies, the outcome for being honest must
match the outcome when fact 1 would apply. Alternatively, if p ∈ ( 1

2 ,1), consider an agent who
is certain either fact 1 or 4 would apply when reporting (a, 1

2 ). Since this report always results in
outcome A, the honest report must also result in A for the same profile of others. Taking these
observations together with fact 1, we have

T
(
(a, p1), (a, 1

2 ) . . . , (a, 1
2 )︸ ︷︷ ︸

n−1
2

, (b, p n+3
2

), . . . , (b, pn)
)= A, ∀p1, p n+3

2
. . . , pn ∈ (0,1)

Repeating this reasoning for the remaining agents with opinion a yields

T
(

(a, p1), . . . , (a, p n+1
2

)︸ ︷︷ ︸
n+1

2

, (b, p n+3
2

), . . . , (b, pn)
)= A, ∀p1, . . . , pn ∈ (0,1)

For the sixth fact, notice that replacing an agent with opinion b with an agent type (a, n+1
2(n−1) )

in fact 5 must preserve the outcome of A. Applying the same argument as in the proof of fact
5 says any prediction pi ∈ (0,1), not just n+1

2(n−1) , must produce an outcome of A. This process
can be repeated, adding further a supporters inductively. Therefore, any number of agents with
opinion a and interior beliefs can be added, resulting in

T
(
(a, p1), . . . , (a, pm), (b, pm+1), . . . , (b, pn)

)= A, ∀p1, . . . , pn ∈ (0,1),∀m ≥ n +1

2
,

which concludes the proof that any neutral, anonymous, and robustly incentive compatible de-
cision rule must be equivalent to majority rule when agents have interior predictions for odd
n.

For even n, the first step is to establish that

T
(

(a, n
2n−2 ), . . . , (a, n

2n−2 )︸ ︷︷ ︸
n
2 +1

, (b, p n
2 +2), . . . , (b, pn)

)= A, ∀p n
2 +2, . . . , pn ∈ [0,1]

analogously to the first fact when n is odd. From this, the remaining facts follow, concluding with
agreement with majority rule for all interior predictions when a majority exists. Furthermore,

T
(

(a, n−2
2n−2 ), . . . , (a, n−2

2n−2 )︸ ︷︷ ︸
n
2

, (b, n
2n−2 ), . . . , (b, n

2n−2 )︸ ︷︷ ︸
n
2

)=∅
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for neutrality because this profile with correct predictions is complementary to itself. Changing
the prediction of an agent with opinion a can’t switch the outcome to A without giving an agent
in this profile an incentive to misreport. The outcome also cannot switch to B without making a
report of (a, n−2

2n−2 ) dominate an honest report of (a, pi ) for an agent that puts positive probability
on this profile since the prediction doesn’t matter for any non-balanced profile. By induction, all
profiles with x̄ = 1

2 and interior predictions must have T (x, p) = ∅ in agreement with majority
rule.

Necessity of Proposition 3. Suppose agent i believes p−i is fixed conditional on x−i , re-
ducing beliefs over the types of others to π(x−i ). Incentive compatibility implies∑

x−i

π(x−i )T ((a, x−i ), (pi , p−i )) ≥ ∑
x−i

π(x−i )T ((a, x−i ), (p ′
i , p−i ))

for all pi , p ′
i , p−i , and π such that Eπ[x̄−i ] = pi , so that agent i does not want to misre-

port her prediction pi . Hence, T is a proper scoring rule for the mean of x−i from the
perspective of agent i holding xi = a fixed. By the McCarthy-Savage representation of
proper scoring rules, T must be representable from the perspective of agent i as

T ((a, x−i ), p) = κi (x, p−i )+Gi (pi ; p−i )+ (x̄−i −pi )G ′
i (pi ; p−i ) (13)

using some Gi convex in pi , where G ′
i is a subderivative in pi . Without loss of general-

ity, we can suppose Gi (0; p−i ) = 0 and G ′
i (0; p−i ) = 0 by folding Gi (0; p−i ) and x̄−i G ′

i (0; p−i )
into κi if necessary. Since G ′

i (pi ; p−i ) must be non-decreasing as a subderivative of a con-
vex function, it has bounded variation on [0,1] and we are free to write it as a Lebesgue-
Stieltjes integral:

G ′
i (pi ; p−i ) =

∫ pi

0
dξi (t ; p−i ). (14)

Then, we have

Gi (pi ; p−i ) =
∫ pi

0

∫ t

0
dξi (s; p−i )dt =

∫ pi

0
(pi − t )dξi (t ; p−i ) (15)

after a change of variables. Plugging the last two lines into line 13 yields

T ((a, x−i ), p) = κi (x, p−i )+
∫ pi

0
(x̄−i − t )dξi (t ; p−i ), (16)

which is closely related to the Schervish (1989) representation (see also Lambert (2011)).
This representation prescribes the specific way that pi and the proportion x̄−i must in-
teract for incentive compatibility, up to a weighting by ξi . For T to be neutral between A
and B , we must have

T ((b, x−i ), p) = κi (x, p−i )−
∫ 1−pi

0
(1− x̄−i − t )dξi (t ;1−p−i )
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so T (x, p)+T (1−x,1−p) = 1. With this form for each agent, it follows by anonymity that

T (x, p) = κ(x̄)+ ∑
i : xi=a

∫ pi

0
(x̄−i − t )dξ(t )− ∑

i : xi=b

∫ 1−pi

0
(1− x̄−i − t )dξ(t ),

since x̄ contains all information preserved under permutations of x and ξ can’t depend
on the identity of the agent. Although ξi could have depended on the predictions of
other agents to be a proper scoring rule for agent i , those predictions can only appear in
their respective integrals to be proper for the remaining agents.

Again taking p−i to be known conditional on x−i , incentive compatibility implies T
is higher in expectation when agent i reports her true type (a, pi ) than when reporting
any (b, p ′

i ). Since the mechanism is anonymous, an agent’s beliefs can be reduced to
a distribution over the number of other agents m = ∑

j 6=−i x j with the a opinion rather
than on x−i directly, even if the underlying belief treats other agents asymmetrically. We
have

n−1∑
m=0

π(m)

(
κ

(m+1
n

)+∫ pi

0

( m
n−1 − t

)
dξ(t )

+ ∑
j : x j=a

∫ p j

0

( m
n−1 − t

)
dξ(t )− ∑

j : x j=b

∫ 1−p j

0

(
1− m+1

n−1 − t
)

dξ(t )

)

≥
n−1∑
m=0

π(m)

(
κ

(m
n

)−∫ 1−p ′

0

(
1− m

n−1 − t
)

dξ(t )

+ ∑
j : x j=a

∫ p j

0

(
na−1
n−1 − t

)
dξ(t )− ∑

j : x j=b

∫ 1−p j

0

(
1− m

n−1 − t
)

dξ(t )

) (17)

⇐⇒
n−1∑
m=0

π(m)

(
κ

(m+1
n

)−κ(m
n

)+ ∑
j : x j=a

∫ p j

0

1
n−1 dξ(t )+ ∑

j : x j=b

∫ 1−p j

0

1
n−1 dξ(t )

)

≥−
∫ pi

0

(
pi − t

)
dξ(t )−

∫ 1−p ′

0

(
1−pi − t

)
dξ(t ) (18)

for all pi , p ′
i , p j (x−i ), and beliefs π such that Eπ[m/(n − 1)] = pi . The last statement is

true only if

n−1∑
na=0

π(m)
(
κ

(m+1
n

)−κ(m
n

))≥−
∫ pi

0

(
pi − t

)
dξ(t )−

∫ 1−p ′

0

(
1−pi − t

)
dξ(t ), (19)

taking p j (a) = 0 and p j (b) = 1. This inequality says that the expectation of κ’s first dif-
ferences must be greater than a function of the mean of the distribution. Following a
similar argument for agents with opinion b yields the differences in κ having the lower
bound

n−1∑
m=0

π(m)
(
κ

(m+1
n

)−κ(m
n

))≥−
∫ p ′

0

(
pi − t

)
dξ(t )−

∫ 1−pi

0

(
1−pi − t

)
dξ(t ) (20)
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Since the right-hand side of each lower bound is quasi-convex in p ′ (non-increasing at
p ′ < pi and non-decreasing at p ′ > pi ), each inequality is satisfied for all p ′ if and only if
it holds for p ′ ∈ {0,1}. Combined, these yields

n−1∑
m=0

π(m)
(
κ

(m+1
n

)−κ(m
n

))≥ max

{
−

∫ pi

0

(
pi − t

)
dξ(t ),

−
∫ pi

0

(
pi − t

)
dξ(t )−

∫ 1

0

(
1−pi − t

)
dξ(t ),

−
∫ 1−pi

0

(
1−pi − t

)
dξ(t ),

−
∫ 1

0

(
pi − t

)
dξ(t )−

∫ 1−pi

0

(
1−pi − t

)
dξ(t )

}
(21)

for all pi ∈ [0,1] and all π such that Eπ[m/(n −1)] = pi .
A lower bound on the expectations ofκ’s differences for all distributions is equivalent

to the differences being separated from the right-hand side by some convex function
of pi . The four quantities in the lower bound are each concave in pi . The first and
fourth are maximized at zero while the second and third are maximized at one, as can
be seen by taking first-order conditions via Leibniz’s rule. Since the first and fourth are
symmetric around 1

2 with the third and second respectively, attention can be restricted
to the second and third terms when considering pi ≥ 1

2 .
Since the terms of the lower bound are concave in pi , the least restrictive convex

upper bound for each term is a supporting line at some point in [ 1
2 ,1]. The supporting

line of the second term at φ1 is

(pi −φ1)

(
−

∫ φ1

0
dξ(t )+

∫ 1

0
dξ(t )

)
−

∫ φ1

0

(
φ1 − t

)
dξ(t )−

∫ 1

0

(
1−φ1 − t

)
dξ(t ) =

−
∫ φ1

0

(
pi − t

)
dξ(t )−

∫ 1

0

(
1−pi − t

)
dξ(t )

(22)

and the supporting line of the third term at φ2 is

(pi −φ2)

(∫ 1−φ2

0
dξ(t )

)
−

∫ 1−φ2

0

(
1−φ2 − t

)
dξ(t ) =−

∫ 1−φ2

0

(
1−pi − t

)
dξ(t ) (23)

The pointwise maximum of the supporting lines is convex and increasing, so this
provides a minimal bound of the differences in κ above 1

2 . Define δ(m) for m +1 ≥ dn
2 e

as

δ(m) = max

{
−

∫ φ1

0

( m
n−1 − t

)
dξ(t )−

∫ 1

0

(
1− m

n−1 − t
)

dξ(t ),

−
∫ 1−φ2

0

(
1− m

n−1 − t
)

dξ(t )

} (24)
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Then, we have κ
(m+1

n

)≥ κ(m
n

)+δ(m) for m+1 ≥ dn
2 e when the expectation in line (21) is

evaluated at degenerate distributions. Neutrality implies κ
(1

2

)= 1
2 and κ(x̄)+κ(1− x̄) = 1,

so without loss of generality

κ
(na

n

)= 1

2
+τ(na

n − 1
2

)+ 1(n odd)
δ

(n−1
2

)
2

+
na−1∑

m=dn/2e
δ(m) (25)

for na ≥ dn
2 e with non-decreasing τ : [0, 1

2 ] → R+ to account for excess differences in κ

above δ(m). Since the base score κ must be negatively symmetric around 1
2 , we then

have

κ
(na

n

)= 1

2
+ sign

(na
n − 1

2

)(
τ
(∣∣na

n − 1
2

∣∣)+ 1(n odd)
δ

(n−1
2

)
2

+
max{na ,nb }−1∑

m=dn/2e
δ(m)

)
(26)

for all na . Without loss of generality, a scaling factor of 1
n could have been applied to each

scoring rule originally and carried through, resulting in the statement of the theorem.

Sufficiency of Proposition 3. The sufficiency of this representation follows from iterated
deletion of interim dominated strategies in the direct mechanism. Consider an agent of
type (a, pi ) who conjectures the average proportion of reported opinions is p̂i . By the
conditions on the base score, a report of (a, p̂i ) weakly prefers good as all reports (b, p ′).
A comparison of lines (17) and (18) above shows the agent will strictly prefer (a, p̂i ) to
(b, p ′) as long as the agent thinks there is some chance that p j and 1−p j (when x j = a
and x j = b, respectively) are outside a neighborhood of zero where ξ(t ) is uniformly zero.
Otherwise, a strict incentive from a strictly increasing τ or partial honesty is necessary
to guarantee dominance. An analogous argument for agents of type (b, pi ) rules out all
(a, p ′). Since each agent prefers submitting their true opinion, it follows that each agent
weakly prefers submitting their true prediction of the opinions of other agents since T
is a proper scoring rule for each agent. Consequently, honest reporting always survives
iterated deletion of weakly interim dominated strategies. Other strategies might also
survive if agents are indifferent between these reports and honesty, but all will result
in the same outcome as honest reporting indifference occurs only when T is constant,
with ξ uniformly zero in some interval containing those reports. Therefore, the unique
dominance solvable outcome for type profile (x, p) conincides with T (x, p).
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